176 research outputs found

    3D Thermal and CFD Simulations of the Divertor Magnetic Coils for ITER

    Get PDF
    Magnetic diagnostics for the new generation fusion reactor “ITER” are required to be extremely reliable since they provide measurements essential for reactor operation and protection, plasma control and for measurement of several parameters fundamental to the plasma operation, such as plasma current and shape, disruptions and high frequency macro instabilities. ITER magnetic diagnostics consist of various sets of inductive coils and loops mounted on the inner wall, outside the vacuum vessel and in some of the divertor cassettes [1]. All these probes measure magnetic field or flux variations with respect to time, requiring a precise integration of the signals to recover the absolute values of the field components. They operate in a harsh reactor environment, subjected to nuclear heat loads mainly due to the neutron radiation, generated by the burning plasma. Difficult or impossible access after assembly requires reliability, especially in the area of wiring, connections and vacuum feed-throughs and in choosing margin against radiation damage and extreme transient electrical loads. Additional disturbing effects can arise when both a strong transient magnetic field and thermal gradient occur within the coil structure. All these aspects set a serial of strict design requirements and imply a serious technical challenge. This paper is focused on the design, simulation and optimization of the ITER divertor magnetic tangential coils. The divertor is one of the components exposed to the highest heat load in a fusion reactor, with a surface thermal peak load of 20 MW/m2. About 15 % of the energy produced by fusion reactions is absorbed in the divertor region. The radially-oriented divertor cassettes are exposed to inhomogeneous and time-dependent neutron flux. Six similar divertor cassettes are instrumented for magnetic measurements. Six pairs of equilibrium coils (normal and tangential to the mounting surface) are mounted within each of these cassettes. Of those, pairs near the top region of divertor dome will be exposed to the highest nuclear heating of all magnetic sensors, 2.5 MW/m3. The most critical issue for the divertor coils is to minimise Radiation Induced Thermo-Electric Sensitivity (RITES) [2] and Thermally Induced Electromagnetic Force (TIEMF) [3] by combining a proper choice of conductor with low temperature variation in the coil. Instead of Mineral Insulated Cable (MIC), which was foreseen as the preferred winding for the magnetic coils, a winding made of ceramic-coated steel wire was recently proposed [4]. It is thought that, for this wire, maintaining a temperature variation in the wiring below 10K will be sufficient to allow long-pulse operation. Variations of the divertor coil design have been investigated and simulated with the help of ANSYS programme. The aim was to keep the temperature variation in the winding pack within this limit. The optimisation of the coil, based only on a cooling by conduction was not sufficient to meet the 10 K target. Therefore, an actively water cooled coil was designed and simulated by the CFD code – ANSYS CFX

    Waveguide Bandpass Filters for Millimeter-Wave Radiometers

    Get PDF
    A fundamental requirement for most mm-wave heterodyne receivers is the rejection of the input image signal which is located close to the local oscillator frequency. For this purpose we use a bandpass filter, which for heterodyne receivers is also called an image rejection filter. In this paper we present a systematic approach to the design of a waveguide bandpass filter with a passband from 100 to 110 GHz and upper rejection bandwidth in the range from 113 to 145 GHz. We consider two non-tunable filter configurations: the first one is relatively selective with 11 sections (poles) whereas the second one is simpler with 5 sections. We used established design equations to propose an initial guess for the geometries of the filters, optimized the geometries, constructed the filters using two different milling methods, measured their transmission and reflection characteristics, and compared the measurements with numerical simulations. Measurements of both filters agree well with simulations in frequency response and rejection bandwidth. The insertion loss of the 11-pole filter is better than 10 dB and that of the 5-pole filter is better than 5 dB. The 11-pole filter has a sharper attenuation roll-off compared with the 5-pole filter. The upper out-of-band rejection is better than 40 dB up to 145 GHz for the 11-pole filter and up to 155 GHz for the 5-pole filter

    Baseline System Design And Prototyping For The Iter High-Frequency Magnetic Diagnostics Set

    Get PDF
    This paper reports the mechanical and electrical tests performed for the prototyping of the ITER high-frequency magnetic sensor and the analysis of the measurement performance of this diagnostic. The current design for the sensor is not suitable for manufacturing for ITER due to the high likelihood of breakages of the un-guided tungsten wire during the winding. A number of alternative designs and manufacturing processes have been investigated, with the Low Temperature Co-fired Ceramic technology giving the best results. The measurement performance of the baseline system design for the high-frequency magnetic diagnostic cannot meet the intended ITER requirements due to its intrinsic spatial periodicities

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
    • 

    corecore